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Abstract. The density of never changed opinions during the Sznajd consensus-finding process decays with
time t as 1/tθ . We find θ � 3/8 for a chain, compatible with the exact Ising result of Derrida et al.
In higher dimensions, however, the exponent differs from the Ising θ. With simultaneous updating of
sublattices instead of the usual random sequential updating, the number of persistent opinions decays
roughly exponentially. Some of the simulations used multi-spin coding.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 89.65.-s Social systems

1 Introduction

In the Ising and Potts models, the persistent spins [1] are
those which from the beginning of a (zero-temperature)
Monte Carlo simulation have never been flipped. In the
thermodynamic limit, their number decreases with time t
asymptotically as 1/tθ with θ = 3/8 exactly on the Ising
chain [2], while higher dimensions were investigated nu-
merically [3] giving θ � 0.2 on the square lattice. Also the
more general Potts model was investigated [1–3]. A review
was given in [4]. Now we simulate the analogous number
in a d-dimensional Sznajd model of consensus-finding [5]
with up to 49 million sites and 1 ≤ d ≤ 4, for the case of
just two possible opinions, the equivalent of spin 1/2 Ising
sites.

In this Sznajd model (see [6] for a review) two oppos-
ing opinions are initially distributed randomly with equal
probability over the Ld “people” of a hypercubic lattice.
Then, each randomly selected pair of nearest neighbours
convinces its 4d−2 nearest neighbours of the pair opinion
if the pair shares the same opinion; otherwise, the neigh-
bour opinions are not affected. One time step means that
on average every lattice site is selected once as the first
member of the pair. (We will mention below the differ-
ent results if this random sequential updating is replaced
by simultaneous updating.) The Sznajd model is one of
several recent consensus-finding models [7] and follows a
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long tradition of social studies using computer simulation
and/or statistical physics [8]. If we wait sufficiently long
for large systems, always a consensus is found: Everybody
has the same opinion and the whole system has reached a
fixed point.

Alternatively, independently of social interpretations,
this model can be understood as a variant of the tradi-
tional kinetic Ising model: instead of a central site being
influenced by its neighbourhood, the neighbourhood itself
is updated according to the states of the central spins. In
spite of this difference to the Ising model, the pictures of
growing domains in the Sznajd model (published in [6])
look similar to Ising coarsening at low temperatures (ex-
cept for single overturned Ising spins), and the cluster
statistics scales in the same way [9] on the square lattice.
Thus one might expect, wrongly as it will turn out, the
same persistence exponents for Sznajd and Ising models.

2 Simulations

We check for the number P (t) of “persistent” sites who
have not yet changed their spins in this Sznajd consen-
sus process. (All our sites are equivalent, in contrast to
Schneider’s modification [10] where some sites are initially
selected as permanent opponents.) We find that usually a
consensus is found before everybody had changed opinion;
i.e. P (∞) > 0. Thus the exponent θ has to be determined
from intermediate times where P (0) � P (t) � P (∞), or
from P (t) − P (∞). Figure 1 shows that this latter quan-
tity has a complicated behaviour, and again only interme-
diate times are used to find θ. In one dimension, P (∞)
is relatively small and the resulting systematic deviations
disturb less.
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Average number of unchanged opinions, d=3, L = 53, 26, 13, 7 from top, slope -0.7

Fig. 1. Log-log plot of the number of persistent people, P (t) − P (∞), versus time, for one, 103, 103, 104 simple cubic lattices
of size L × L × L with L = 53, 26, 13, 7. Only the intermediate times before the plateau and final decay to zero are used to
estimate the exponent θ � 0.7, indicated here by the straight line.
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Fig. 2. Effective exponents in one dimension, approaching perhaps the Ising value 3/8 (horizontal line) for long times and large
lattices.

Figures 2 to 4 show for d = 1, 2 and 3 the effective
exponents θ analyzed by least square fits over five suit-
able time intervals tn < t < tn+1 with tn+1 = 2tn. For
d > 1, only the times until the first of the (typically 1000)
samples reached a consensus were used and averaged over.
We conclude that θ � 3/8 in one dimension, 0.5 in two,
and the same or somewhat higher in three dimensions.
Figure 5 shows that four dimensions is difficult to analyze

though maybe θ � 0.9. Our one-dimensional estimate is
compatible with the Ising value 3/8, but for higher dimen-
sions our θ(d) goes up while the Ising θ(d) went down for
increasing d.

We also speeded up the simulations by storing 32
or 64 sites (belonging to 32 or 64 different samples)
in each computer word, using single-bit handling [11]
known for Ising models as multi-spin coding. The random
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Fig. 3. As Figure 2, but for square lattices, using intermediate times only, before any final consensus was found.
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Fig. 4. As Figure 3 but for simple cubic lattices.

selection of neighbour pairs was the same for all 32 or
64 samples. The C program is available from PMCO, the
Fortran program from DS. The C program uses periodic
boundary conditions, the Fortran program has free bound-
aries. Both give the same results for the short times an-
alyzed here and differ in the final number of unchanged
sites after a fixed point was reached.

If during one time step all sites are updated simul-
taneously, with frustrated sites not changing their opin-
ion, then no consensus is found [12]. (Frustrated are those
sites which simultaneously are convinced to different opin-
ions by different neighbour pairs.) This frustration can be

avoided by dividing the lattice into sublattices, such that
no sites within one sublattice can influence each other
directly; we divided our lattices such that the distances
between sites belonging to the same sublattice are at least
five lattice constants. (For nearest-neighbour Ising models,
the two sublattices of a chess-board suffice on the square
lattice, while we used 25 inter-penetrating sublattices for
the square Sznajd model.) With this simultaneous updat-
ing of sublattices, frustration is avoided, a consensus is
always found, but P (t) no longer decays as a power law,
Figure 6: criticality seems lost. Also, this version no longer
shows the phase transition of the usual square Sznajd
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Fig. 5. Log-log plot of P (t) − P (∞) for hypercubic lattices in four dimensions averaged over 103 samples (32 samples only for
L = 26).
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Fig. 6. Log-log plot of P (t) for 7000 × 7000 square lattice with unfrustrated simultaneous updating of sublattices.

model, when the ratio of the fractions of the two initial
opinions is varied away from unity. Thus, the simultaneous
updating is not merely a possible acceleration of the dy-
namic process. Also the correlations between spins behave
differently, being affected by the simultaneous updating of
spins far apart from each other.

3 Discussion

How can we explain these results? An anonymous referee
gave the following argument why in one dimension the

Sznajd and Ising exponents for persistence are the same:
If one draws a picture of a configuration, it becomes ev-
ident that the dynamics of the domain walls (separating
the up and down domains) perform simple random walks
and annihilate upon contact, as in the one-dimensional
Ising model. There are two minor differences with the Ising
model: (i) the rates of diffusion of the walkers are slightly
different from the Ising model, which can be taken care
of by rescaling the time and (ii) unlike the Ising model,
the fully antiferromagnetic configuration is an attractor
of the dynamics in the Sznajd model. The dynamics stops
if the system gets into this configuration. However, this is
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Fig. 7. Variation with system size of the final number of never changed opinions, in one to three dimensions, using free boundary
conditions. Different size dependencies were seen with periodic boundary conditions (not shown).

an unstable configuration, so a large enough system never
reaches there if it starts from a random initial configura-
tion. So, at early times, when there are blocks of antiferro-
magnetic domains, the dynamics will be different from the
Ising model but very soon the system will get rid of these
antiferromagnetic blocks and then a typical configuration
will consist of only up and down domains separated by
diffusing domain walls, as in the Ising model. This argu-
ment is not rigorous since a single down spin in a long line
of up spins constitutes two freely moving domain walls for
the Ising case but can only vanish in the Sznajd case.

Our final number of never changed spins, which dis-
turbed the analysis at the very end of our plots, Figure 1,
is not a blocking effect as may happen in Ising models.
Instead, we have here two competing processes leading to
a fixed point at which the simulations stop: Process A is
the consensus finding in the standard Sznajd model; after
a sufficiently long time no spin could be flipped by the
dynamic rules; the system reaches a globally absorbing
state, for instance all spins parallel to each other. Process
B is the monotonic decay of the number of never changed
opinions; if that number reaches zero our particular sim-
ulation here also stops since this number will stay at zero
even if the spins still flip. The persistence exponent, ac-
cording to which the number of never flipped spins decay
as a power law, corresponds only to process B, still dur-
ing the transient regime. The purpose of our work is to
study only this process B, not the final regime of process
A, where the system becomes dead. If process A finishes
before process B is finished, some opinions remain un-
changed forever and lead to our difficulties. The data in
Figure 7, based on free boundary conditions, suggest that
the number of never changed opinions in a lattice of Ld

sites varies roughly as Ld−1, and thus the fraction of such

opinions vanishes as 1/L. (The exponent zero in one di-
mension may indicate a logarithmic increase.) However,
these details depend on boundary conditions; our analysis
for the exponents thus concentrated on the earlier times
where none of the many samples yet had finished its pro-
cess A.

In summary, the Sznajd model is Ising-like in one di-
mension but not in higher dimensions for the persistence
exponent θ.

We thank B. Derrida for a discussion, and the Jülich super-
computer center for time on their Cray-T3E.
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